

RS-WS-N01-* 温湿度变送器使用说明书 (485 型)

文档版本: V1.2

目录

1.	产品介绍	3
	设备安装说明	
	配置软件使用	
	通信协议	
5.	常见问题及解决办法	9
	联系方式	
文	档历史	10
	录:产品尺寸图	

1. 产品介绍

1.1 产品概述

该变送器温湿度传感器内置,体积小巧,电路采用我公司最新的温湿度测量技术。输出信号类型为 RS485,通信地址及多种波特率可设置,通信距离最远 2000 米。产品具有防接反保护功能,接反不会烧坏设备。

1.2 功能特点

- ■485 通信接口,标准 ModBus-RTU 协议,通信地址、波特率可设置,通信线最长可达 2000 米;
- ■温度精度±0.5℃、湿度精度±4%RH,高精度、低漂移;
- ■采用专用的 EMC 抗干扰器件,现场可经受住强电磁干扰,工业级处理芯片,使用范围宽;
- ■5~28V 宽电压范围供电,远距离集中供电仍能正常工作;
- ■电源防接反保护功能,正负极接反不会烧坏设备。

1.3 主要技术指标

直流电源 (默认)	5-28V DC		
最大功耗		≤0.05W	
精度	湿度	±4%RH (60%RH, 25℃)	
相/文	温度	±0.5℃ (25℃)	
变送器元件耐温及湿度	-40°C∼+8	80℃,0%RH~95%RH (非结露)	
通信协议		ModBus-RTU 通信协议	
输出信号	485 信号		
温度显示分辨率	0.1℃		
湿度显示分辨率		0.1%RH	
温湿度刷新时间		2s	
V ₩□ エΔ ↩→ ԽL	温度	≤0.1°C/y	
长期稳定性	湿度	≤1%RH/y	
ng chind to 1	温度	≤25s(1m/s 风速 ²)	
响应时间 1	湿度	≪8s (1m/s 风速 ²)	
参数设置		通过软件设置	

¹响应时间为τ63时间。

² 风速是指传感器内部敏感材料处风速,测试环境风速为 10⁻²m/ms 时,风向垂直于传感器采集口,传感器内部敏感材料处风速约为 1m/s。

1.4 产品型号

RS-				公司代号
	WS-			温湿度变送、传感器
		N01-		RS485(ModBus 协议)
			PE	
			PVC	
			MW	
			QT	
			MK	
			МКН	
			MWH	B C

2. 设备安装说明

2.1 设备安装前检查

设备清单:

- ■变送器设备1台
- ■合格证、保修卡
- ■USB 转 485 (选配)
- ■卡扣1个

2.2 接口说明

2.2.1 电源及 485 信号

宽电压电源输入 5~28V 均可。485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。

2.3 接线

线色	说明
棕色	电源正(5~28V DC)
黑色	电源负
黄 (绿)色	485-A
蓝色	485-B

2.4 485 现场布线说明

多个485型号的设备接入同一条总线时,现场布线有一定的要求,具体可咨询售后工程师。

3. 配置软件使用

3.1 软件选择

打开资料包,选择"调试软件"---"485参数配置软件",找到 打开即可。

3.2 参数设置

①、选择正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM 端口),下图列举出几种不同的 485 转换器的驱动名称。

- ②、单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

4. 通信协议

4.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC (冗余循环码)
波特率	1200bit/s、2400bit/s、4800bit/s、9600 bit/s、19200bit/s、38400bit/s、
伙付竿	57600bit/s、115200bit/s,出厂默认为 4800bit/s

4.2 数据帧格式定义

采用ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认0x01)。

功能码: 主机所发指令功能指示。

数据区:数据区是具体通讯数据,注意16bits数据高字节在前!

CRC码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地址	PLC或组态地址	内容	操作	支持功能码
0000 H	40001	湿度(实际值10倍)	只读	03、04
0001 H	40002	温度(实际值10倍)	只读	03、04
07D0 H	42001	地址	读写	03, 04, 06, 16
07D1 H	42002	0代表2400 1代表4800 2代表9600 3代表19200 4代表38400 5代表57600 6代表115200 7代表1200	读写	03、04、06、16
0050 H	40081	温度校准值(实际值10倍)	读写	03, 04, 06, 16
0051 H	40082	湿度校准值(实际值10倍)	读写	03, 04, 06, 16

4.4 通讯协议示例以及解释

4.4.1 读取设备地址 0x01 的温湿度值

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x00	0x00 0x02	0xC4	0x0B

应答帧(16进制): (例如读到温度为-20.5℃,湿度为25.8%RH)

地址码	功能码	返回有效字节数	湿度值	温度值	校验码低位	校验码高位
0x01	0x03	0x04	0x01 0x02	0xFF 0x33	0x5B	0xEA

温度计算:

当温度低于 0 ℃ 时温度数据以补码的形式上传。

温度: FF33 H(十六进制)= -205 => 温度 = -20.5℃

湿度计算:

湿度: 102H(十六进制)=258=> 湿度 = 25.8%RH

4.4.2 读取设备地址 0x01 的温度校准值

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x50	0x00 0x01	0x84	0x1B

应答帧(16进制): (例如读到温度校准值为-1.0℃)

地址码	功能码	返回有效字节数	温度校准值	校验码低位	校验码高位
0x01	0x03	0x02	0xFF 0xF6	0x79	0xF2

温度校准值计算:

当温度校准值小于 0 时温度校准值数据以补码的形式上传。

温度校准值: FF F6 H(十六进制)= -10 => 温度校准值 = -1.0℃

4.4.3 设置设备地址 0x01 的温度校准值

下发温度校准值-1.0度, 当温度校准值小于 0 时温度校准值数据以补码的形式下发。

温度校准值: FF F6 H(十六进制)= -10 => 温度校准值 = -1.0℃

请求帧(16进制):

地址码	功能码	寄存器地址	温度校准值内容	校验码低位	校验码高位
0x01	0x06	0x00 0x50	0xFF 0xF6	0x48	0x6D

应答帧(16进制):

地址码	功能码	寄存器地址	温度校准值内容	校验码低位	校验码高位
0x01	0x06	0x00 0x50	0xFF 0xF6	0x48	0x6D

湿度校准值操作与温度校准值操作类似。

4.4.4 将地址为 01 的设备改为 02

请求帧(16进制):

地址码	功能码	寄存器地址	地址	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

应答帧(16进制):

地址码	功能码	寄存器地址	地址	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

4.4.5 设置设备地址 0x01 的波特率为 4800

将设备 01 的波特率改为 4800

请求帧(16进制):

地址码	功能码	寄存器地址	波特率值内容	校验码低位	校验码高位
0x01	0x06	0x07 0xD1	0x00 0x01	0x19	0x47

应答帧(16进制):

地址码	功能码	寄存器地址	波特率值内容	校验码低位	校验码高位
0x01	0x06	0x07 0xD1	0x00 0x01	0x19	0x47

4.4.6 读设备地址

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0xFF	0x03	0x07 0xD0	0x00 0x01	0x91	0x159

应答帧(16进制): (例如读到地址为1)

地址码	功能码	返回有效字节数	当前地址	校验码低位	校验码高位
0x01	0x03	0x02	0x00 0x01	0x79	0x84

4.4.7 读设备波特率

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x07 0xD1	0x00 0x01	0xD5	0x47

应答帧(16进制): 例如读到波特率为4800

地址码	功能码	返回有效字节数	当前地址	校验码低位	校验码高位
0x01	0x03	0x02	0x00 0x01	0x79	0x84

5. 常见问题及解决办法 设备无法连接到 PLC 或电脑

可能的原因:

- 1)选择的COM口不正确。
- 2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3)波特率,校验方式,数据位,停止位错误。
- 4)主机轮询间隔和等待应答时间太短,需要都设置在200ms以上。
- 5)485总线有断开,或者A、B线接反。
- 6)设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻。
- 7)USB转485驱动未安装或者损坏。
- 8)设备损坏。

6. 联系方式

山东仁科测控技术有限公司

营销中心: 山东省济南市高新区舜泰广场 8 号楼东座 10 楼整层

邮编: 250101

电话: 400-085-5807

传真: (86) 0531-67805165

网址: www.rkckth.com

云平台地址: www.0531yun.com

山东仁科测控技术有限公司 官网

欢迎关注微信公众平台, 智享便捷服务

文档历史

文档建立 V1.0

更改波特率说明 V1.1

V1.2 增加选型及对应渲染图

附录:产品尺寸图

PΕ MW MWH MK/MKH