

管道式 CO2 变送器 使用说明书 (485 型)

文档版本: V1.4

目录

1. 产品介绍
1.1 产品概述
1.2 功能特点
1.3 主要技术指标
1.4 产品选型
1.5 系统框架图
2. 设备安装说明
2.1 设备安装前检查4
2.3 接口说明
2.4 485 现场布线说明5
3. 配置软件安装及使用
3.1 软件选择
3.2 参数设置
4. 通信协议
4.1 通讯基本参数
4.2 数据帧格式定义7
4.3 寄存器地址
4.4 通讯协议示例以及解释
4.4.1 读取地址为 0x01 设备的地址以及波特率
4.4.2 修改地址
4.4.3 修改地址为 0x01 的波特率
4.4.4 读取设备地址 0x01 的 CO2 值 8
5. 常见问题及解决办法
6.注意事项
7. 联系方式
8. 文档历史10
9. 附录: 壳体尺寸11

1. 产品介绍

1.1 产品概述

该变送器采用新型红外检定技术进行 CO2 浓度测量,反应迅速灵敏,避免了传统电化 学传感器的寿命及长时间漂移问题,该变送器专业应用于管道 CO2 浓度测量,设备采用防 水外壳设计,管道式安装方式,现场安装方便,采用抗干扰电路设计,可经受住现场变频器 等各种强电磁干扰。

485通信,标准ModBus-RTU通信协议,通信地址及波特率可设置,最远通信距离2000 米。设备10-30V宽压供电,外壳防护等级高,能适应现场各种恶劣条件。

1.2 功能特点

■新型红外检定技术进行 CO2 浓度测量,准确度高,漂移小,寿命长

■测量范围宽,默认 0-5000ppm (默认),自带温度补偿,受温度影响小。

■485 通信,标准 ModBus-RTU 通信协议,通信地址及波特率可设置,最远通信距离 2000 米

■产品采用管道式防水壳,安装方便,防护等级高。

1.3 主要技术指标

功耗: 0.3W (24VDC)

供电电源: 10~30V DC

CO2 测量范围: 0~5000ppm

CO2 精度: ±(50ppm+ 3%F • S) @(25℃、400~5000ppm)

稳定性: <2%F•S 数据更新时间: 2s 非线性: <1%F•S

响应时间: 90%阶跃变化时一般小于 180s

工作环境: -10~+50℃、0%RH~95%RH (非结露) 平均电流: <85mA

系统预热时间: 2min(可用)、10min(最大精度) 温度影响: 自带温度补偿

1.4 产品选型

RS-				公司代号
	CO2-			CO2 浓度变送、传感器
		N01-		RS485(ModBus 协议)
			2FL	防水管道式外壳
			OLEDFL	防水管道式带 OLED 显示外壳

2.2 安装步骤说明

2.3 接口说明

宽电压电源输入 10~30V 均可。485 信号线接线时注意 A\B 两条线不能接反,总线上多 台设备间地址不能冲突。

	线色	说明
电	棕色	电源正(10~30V DC)
源	黑色	电源负
通	黄色	485-A
信	蓝色	485-B

2.4 485 现场布线说明

多个485型号的设备接入同一条总线时,现场布线有一定的要求,具体请参考资料包中 《485设备现场接线手册》。

R\$485#

打开资料包,选择"调试软件"---"485参数配置软件",找到配置工具2.0

打开即可。

3.2 参数设置

①、选择正确的 COM 口("我的电脑一属性一设备管理器一端口"里面查看 COM 端口), 下图列举出几种不同的 485 转换器的驱动名称。

主 🥘 电池
😑 💆 端口 (COM 和 LPT)
🚽 🗍 🚽 Prolific USB-to-Serial Comm Port (COM1)
- 🚽 USB Serial Port (COM2)
- 🖉 USB-SERIAL CH340 (COM5)

②、单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

串口号 「COM3 」 形式波特率		- 设备波持军
湿度类 水浸 烟感 红外 光照度	, 类 气体类 风速 风向 土壤 气象f	402B
¥温度 温湿度	家试结果	2
	设备地址:1 波特率:4800	
温度	r n	-

4. 通信协议

4.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC (冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器用到功能码 0x03 (读取寄存器数据) 06(写入寄存器)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第N数据区	校验码
1 字节	1 字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地址	PLC或组态地址	内容	操作	范围及定义说明
0002 H 40003		CO2浓度值	只读	0~5000
003A H	40059	CO2上限报警值	读写	0~5000
003B H	40060	CO2下限报警值	读写	0~5000
003D H	40062	CO2校准值	读写	-2000~2000
07D0 H	42001	设备地址	读写	1~254(出厂默认1)

07D1 H	42002	设备波特率	读写	0代表2400	1代表4800
				2代表9600	

4.4 通讯协议示例以及解释

4.4.1 读取地址为 0x01 设备的地址以及波特率

问询帧(例如:地址为0x01 波特率为4800)

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x07 0xD0	0x00 0x02	0xC4	0x86

应答帧

地址码	功能码	有效字节数	波特率	地址	校验码低位	校验码高位
0x01	0x03	0x04	0x00 0x01	0x00 0x01	0x6A	0x33

4.4.2 修改地址

问询帧(假设修改地址为0x02 注意:修改地址后需断电重启设备)

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

应答帧

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

4.4.3 修改地址为 0x01 的波特率

问询帧(假设修改波特率为9600 注意:修改地址后需断电重启设备)

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD1	0x00 0x02	0x59	0x46

应答帧

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD1	0x00 0x02	0x59	0x46

4.4.4 读取设备地址 0x01 的 CO2 值

问询帧

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x02	0x00 0x01	0x25	0xCA

应答帧(例如读到 CO2 为 3000ppm)

地址码	功能码	返回有效字节数	CO2 值	校验码低位	校验码高位
0x01	0x03	0x02	0x0B 0xB8	0xBF	0x06

CO2:

BB8 H(十六进制) =3000 => CO2=3000 ppm

5. 常见问题及解决办法

设备无法连接到 PLC 或电脑

可能的原因:

1)电脑有多个 COM 口,选择的口不正确。

2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。

3)波特率,校验方式,数据位,停止位错误。

4)主机轮询间隔和等待应答时间太短, 需要都设置在 200ms 以上。

5)485 总线有断开,或者 A、B 线接反。

6)设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻。

7)USB转485驱动未安装或者损坏。

8)设备损坏。

6.注意事项

1)请勿将该设备应用于涉及人身安全的系统中。

2)请勿将设备安装在强对流空气环境下使用。

3)设备应避免接触有机溶剂(包括硅胶及其它胶粘剂)、涂料、药剂、油类及高浓度气体。

4)设备不能长时间应用于含有腐蚀性气体的环境中,腐蚀性气体会损害传感器;

5)请勿将设备长时间放置于高浓度有机气体中,长期放置会导致传感器零点发生漂移,恢复缓慢。6)禁止长时间在高浓度碱性气体中存放和使用。

7)尽管本产品具有很高的可靠性,但我们建议在使用前检查设备对目标气体的反应,确保现场使用。

山东仁科测控技术有限公司

营销中心:山东省济南市高新区舜泰广场8号楼东座10楼整层

邮编: 250101

- 电话: 400-085-5807
- 传真: (86) 0531-67805165
- 网址: www.rkckth.com
- 云平台地址: <u>www.0531yun.com</u>

山东仁科测控技术有限公司 官网

欢迎关注微信公众平台, 智享便捷服务

8. 文档历史

- V1.0 文档建立V1.1 增加功耗说明
- V1.2 规范了精度说明
- VI.2 》记记J作及此
- V1.3 更新参数
- V1.4 更新外观

