

RS-RAD-N01-1 雷达水位计传感器 使用说明书

文档版本: V1.6

目录

1.	产品介绍	3
2.	产品选型	3
3.	安装使用	3
4.	配置软件安装及使用	5
5.	通信协议	5
6.	常见问题及解决办法	7
7.	联系方式	8
8.	文档历史	8
9.	附录	.9

1. 产品介绍

1.1 产品概述

雷达水位计系列产品,是指工作在 77GHz~79GHz 的调频连续波(FMCW)雷达产品。产品最大量程可以达到 65m, 盲区在 10 cm 以内。由于它工作频率更高,带宽更大,测量精度更高。产品提供支架的固定方式,配合本公司水雨情立杆、主机使用。

1.2 功能特点

- 基于自研的 CMOS 毫米波射频芯片,实现更紧凑的射频架构,更高的信噪比,更小的 盲区。
- 工作带宽大,使产品拥有更高的测量分辨率与测量精度。
- 最窄 6°天线波束角,安装环境中的干扰对仪表的影响更小,安装更为便捷。
- 一体化透镜设计,体积精巧,便于安装
- 功耗低,寿命时间长。

1.3 主要技术指标

供电	DC10-30V
最大功耗	0.2W
发射频率	77GHz~79GHz
测量范围	0.1 m ∼65m
测量精度	±1mm, @ (4m, 40%RH, 25℃)
波束角	6°
变送器元件耐温及湿度	-40℃~+80℃,0%RH~95%RH (非结露)
通讯协议	RS485 输出
防护等级	IP67

2. 产品选型

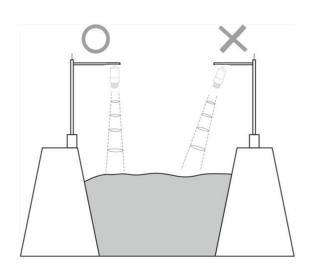
RS-				公司代号
	RAD-			雷达监测传感器
		N01-		485 (ModBus-RTU)
			1	雷达水位计

3. 安装使用

3.1 设备安装前检查

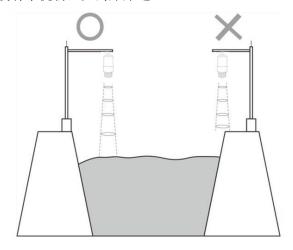
设备清单:

- ■雷达水位计传感器设备1台
- ■T 型法兰安装托片



- ■合格证、保修卡、接线手册等
- ■安装螺丝

3.2 安装步骤说明


安装需要注意的两点:

- (1)保证仪表垂直于水面(2)避免发射波束照射到干扰物,产生虚假回波。典型工况参见以下几点。
- 保证水位计垂直于水面安装,倾斜将接受信号幅度变弱,影响正常测距。

仪器安装位置示意图

■ 保证波束范围内没有干扰物,如河岸岸边。

仪器安装位置示意图

3.3 电源及 485 信号接线说明

宽电压电源输入 10~30V 均可。485 信号线接线时注意 A/B 两条线不能接反,总线上多台设备间地址不能冲突。串口参数: RS458, 波特率--9600, 数据位--8, 停止位--1, 校验位--无。注意设备供电电压在 10V--30V 范围内,建议使用 12V 供电。

3.4 具体型号接线

接线说明

A-74 00 74	_		
	485型(-1)		
+ MZ	红色	VCC	
电源	黑色	GND	
<i>+</i> ∆.11	绿色	485A	
输出	黄色	485B	
	485酉	텔 (-1L)	
H- MZ	棕色	VCC	
电源	黑色	GND	
<i>t</i> .△ .11	黄色	485A	
输出	蓝色	485B	

4. 配置软件安装及使用

4.1 软件选择

具体请联系我公司工作人员获取。

4.2 参数设置

①、选择正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM 端口),下 图列举出几种不同的 485 转换器的驱动名称。

USB-SERIAL CH340 (COM5)

- ②、单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为9600bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。
- ⑤、具体操作请查看附录A

5. 通信协议

5.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC (冗余循环码)

波特率 9600 bit/s

5.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码: 为变送器的地址, 在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低字节	校验码高字节
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	数据二区	数据N区	校验码低字节	校验码高字节
1 字节	1 字节	1字节	2 字节	2 字节	2 字节	1 字节	1字节

5.3 寄存器地址

寄存器地址	内容	操作	功能码	定义说明
0000 H	空高值(cm)	只读	03	读取空高,单位 cm
0001 H	空高值(mm)	只读	03	读取空高,单位 mm
0002 H	液位高(cm)	只读	03	读取液位高,单位 cm
0003 H	液位高(mm)	只读	03	读取液位高,单位 mm

5.4 通讯协议示例以及解释

读取设备地址 0x01 的设备 0 号寄存器空高值

问询帧:

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x00	0x00 0x01	0x84	0x0A

应答帧:空高值(cm)应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
0x01	0x03	0x02	0x00 0x64	0xB9	0xAF

应答帧: 空高值(mm)应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
0x01	0x03	0x02	0x03 0xE8	0xB8	0xFA

6. 常见问题及解决办法

6.1 设备无法连接到 PLC 或电脑

可能的原因:

- 1)电脑有多个 COM 口,选择的口不正确。
- 2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3)波特率,校验方式,数据位,停止位错误。
- 4)主机轮询间隔和等待应答时间太短,需要都设置在 200ms 以上。
- 5)485 总线有断开,或者 A、B 线接反。
- 6)设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120Ω终端电阻。
- 7)USB 转 485 驱动未安装或者损坏。
- 8)设备损坏。

7. 联系方式

山东仁科测控技术有限公司

营销中心: 山东省济南市高新区舜泰广场 8 号楼东座 10 楼整层

邮编: 250101

电话: 400-085-5807

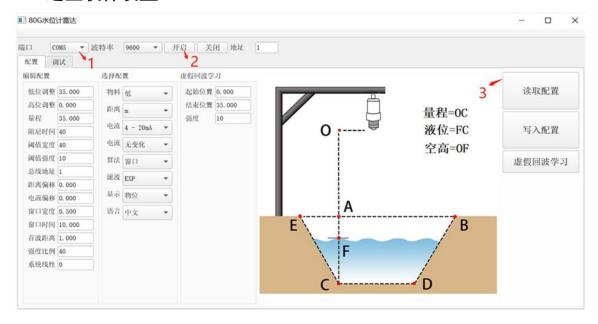
传真: (86) 0531-67805165

网址: www.rkckth.com

云平台地址: www.0531yun.com

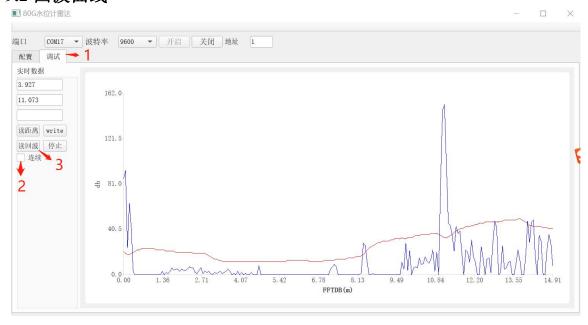
山东仁科测控技术有限公司 官网

欢迎关注微信公众平台, 智享便捷服务


8. 文档历史

- V1.0 文档建立。
- V1.1 更改供电线线色。
- V1.2 更改工作温度。
- 增加尺寸说明。 V1.3
- V1.4 增加尺寸说明。
- 增加选型。 V1.5
- V1.6 修改错误。

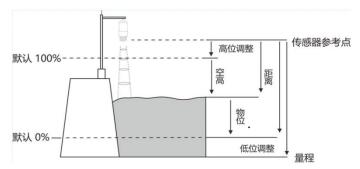
9. 附录


9.1 选型软件设置

配置串口参数

按照图中顺序配置串口参数,波特率 9600,连接成功后双击"读取配置"可以设置和读取参数。

9.2 回波曲线



波形界面

9.2.1【低位调整】

【低位调整】即低位调整点,具体的定义参见下图。

低位调整编辑界面与定义

低位调整说明

参数名称	低位调整
参数范围 (m)	0.1~量程
默认值 (m)	30
关联配置	如果设置的低位调整<高位调整+0.1,则低位调整 = (高位调整+0.1);
特别事项	低位调整点与量程无关,只影响物位的计算

9.2.2【高位调整】

【高位调整】即高位调整点。

高位调整说明

参数名称	高位调整
参数范围 (m)	0~(低位调整-0.1)
默认值 (m)	0
关联配置	如果设置的高位调整 > (低位调整-0.1),则高位调整 = (低位调整-0.1);
特别事项	高位调整与盲区设定无关,只影响空高的计算

9.2.3【距离偏移】

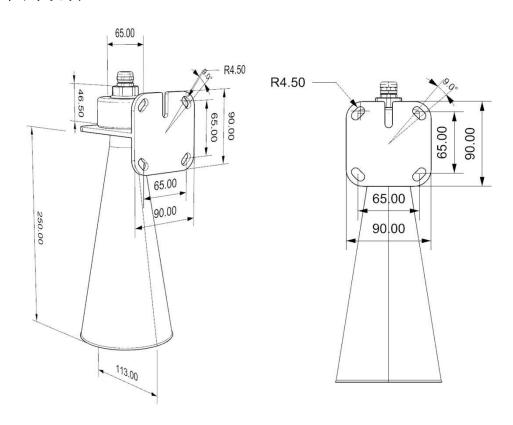
【距离偏移】用于修正传感器的参考点。仪表默认的参考点在出厂时被调校到如下图 a 点所示的位置。如果想将参考点向下调校到 b 点,则在设置中输入 h1。

距离偏移编辑界面

距离偏移说明

参数名称	距离偏移
参数范围	(-内置偏移)~10m
(m)	
默认值 (m)	0
关联配置	无
选项意义	修正传感器的参考点零点。传感器输出值的范围仍为【盲区】~【量程】
	之间,实际传感器测量范围归一化到初始参考点为:【距离偏移+盲区】
	~【距离偏移+量程】。
特别事项	

9.2.4【量程设定】


为了测量得到正确的结果,需设置仪表的量程范围,具体含义参见下表。

参数名称	量程
参数范围	1~65
(m)	
默认值 (m)	35
关联配置	如果设置量程<(盲区+0.1m),则量程自动设置为(盲区+0.1m)。
选项意义	算法处理时会忽略量程之外的回波,合理设置量程可以避开多次反射干
	扰以及可能的范围之外的干扰信号。
特别事项	此量程并非指仪表的远端测量极限,只用作限定算法区域。仪表测量极
	限请参见技术规格一节。

注: 盲区与量程决定了算法应用的具体范围,可以通过合理设置,规避干扰与虚假回波,实现快速且稳定的测量。

9.3 尺寸说明

